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Wave radiation and wave diffraction from a 
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Radiation and diffraction of free-surface waves due to a submerged body in a uniform 
current is considered. The fluid layer is infinitely deep and the motion is two- 
dimensional. Applying the method of integral equations, the radiation problem and 
the diffraction problem for a submerged circular cylinder are examined. For small 
speed U of the current a forced motion of a given frequency will give rise to four waves. 
It is shown, however, that, for a circular cylinder, an incoming harmonic wave gives 
rise to  two waves only. Depending on the frequency, the new generated wave may 
be considered as a transmitted or a reflected wave. The mean second-order force is 
computed. For the radiation problem the first-order damping force is also obtained. 
It is shown that, for some values of the parameters, the damping force is negative. 
This result is closely related to the fact that a harmonic wave travelling upstream 
with a phaae velocity less than U conveys negative energy downstream. The forces 
remain fmite as Vulg (u = the frequency, g = the acceleration due to gravity) 
approaches a. 

1. Introduction 
The intention of the present paper is to discuss the radiation and diffraction 

characteristics of a circular cylinder submerged in a uniform current under a free 
surface. Only the two-dimensional problem is considered, and all equations are 
linearized. The corresponding problem with no current present has been discussed 
in several papers. One of the most striking results in the diffraction problem is that 
a submerged body of circular contour gives no reflection (Dean 1948; Ursell 1950; 
Grue & Palm 1984). The radiation problem has been discussed by Ogilvie (1963). One 
of his results is that a circular cylinder describing a circular orbit in the clockwise 
direction, generates at large distances a harmonic wave to the right of the cylinder 
and no motion to the left. Correspondingly, if the circular orbit is described in the 
opposite rotational direction, a harmonic wave is generated to the left of the cylinder 
and no motion to the right. Reversing the wave motion, this means that a circular 
cylinder describing a circular orbit may absorb an incoming wave completely. This 
obviously may be of interest in connection with construction of devices for wave- 
energy extraction (Evans et d. 1979). 

In most practical applications of wave reflection and wave radiation from a 
submerged body a current may also be present. This may, for example, be true if 
we consider the forces acting on the submerged bracings of an oil platform. The 
bracings are usually long compared with the diameter, and a two-dimensional theory 
is appropriate for incident waves with crests parallel to the cylinder axis. Another 
example is pipelines in the ocean. 

Regarded from the frame of reference where the current is zero, the relative frame 
of reference, the problem we shall examine is wave reflection and wave radiation from 
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a moving submerged body. Wave reflection and wave radiation from a floating body 
is a fundamental problem in the theory of ship motion. We believe that our results 
for the submerged body may also throw some light on the corresponding ship 
problem. 

The occurrence of a current complicates the problem in various respects. The steady 
current, as well as the oscillating wave motion, may generate vortex shedding. These 
effects are disregarded here, where we shall focus our interest on the generation of 
waves. The current also gives rise to steady waves behind the body. These waves, 
which here will be denoted as lee waves, will be discussed shortly in connection with 
the restriction they put on the validity of the time-periodic solution. 

A typical feature of waves on a uniform current is that a body oscillating with a 
given frequency generates several waves of different wavelengths. More precisely, for 
weak currents, i.e. for 7 = Uu/g < $ (a = frequency, g = acceleration due to gravity, 
U = speed of the current), four waves are generated. For stronger currents, i.e. for 
T > $, two waves are generated. In the diffraction problem (with one incoming 
harmonic wave) the submerged body will normally generate the same type of waves 
as in the radiation problem. This, however, is not true for a submerged body of 
circular form (see below). 

The radiation problem will be studied in 54, and the diffraction problem in 95. The 
solution will be obtained by use of integral equations. These will be solved partly by 
an approximate method, valid for deeply submerged bodies, and partly by a 
numerical method where no such assumptions are made. The approximate method 
gives the solution of the integral equation immediately. It is shown that the 
approximate method leads to a fair approximation for circular cylinders with centres 
placed at depths larger than about twice the radius. 

In  the radiation problem we shall study sway, heave and the case when the centre 
of the cylinder describes a circular orbit. The first-order damping force and the 
second-order steady force will be computed. It is found that the damping force may 
be negative for some values of the parameters. This result is shown to be due to the 
fact that one of the generated waves, the k, wave, conveys negative wave energy. 

In the diffraction problem it will be shown that a submerged body of circular form 
behaves very specially, generating only one new wave for all values of 7.  Thus for 
an incoming k, wave (k,-wave) only a reflection wave with wavenumber k, (k,) is 
generated. An incoming k, wave or k, wave will be split into a k, wave and a k, wave, 
with no reflection waves. From the definitions (3.4) and (3.5) of k,, k,, k,, k,, i t  
follows that this result is a direct generalization of the classical result that a body 
of circular contour gives no reflection for U = 0. 

2. The boundary-value problem 
Let coordinates be taken with the origin 0 in the mean free surface of the fluid, 

with the z-axis horizontal and normal to the generators of the cylinder, and with the 
y-axis positive upwards. The fluid is assumed incompressible and the motion 
irrotational. The uniform velocity U of the water is horizontal and along the negative 
x-axis. The velocity v may then be written 

where e, is the unit vector along the z-axis and @* a velocity potential. @* satisfies 
the two-dimensional Laplace equation 

v = V@*- Ue,, (2.1) 

vw* = 0. (2.2) 
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The fluid layer will be assumed to be of infinite depth. The boundary condition at 

y =-a is then lim V@*=O.  (2.3) 
y+-m 

Furthermore, at the submerged body we must have 

Un, = v,, 
a@* -- 
an 

where a/& denotes the normal derivative and n, is the x-component of the normal 
vector n of the body, defined as positive into the fluid. v, is the normal velocity of 
the body. In addition, the boundary condition at the free surface must be satisfied. 
We shall assume that this condition may be linearized. This is a valid approximation 
if either the body is deeply submerged or the body is slender. Since we here consider 
bodies of circular form, the first-mentioned condition is assumed satisfied. How deeply 
the body must be submerged for the assumption to be valid will be discussed later. 
The free-surface condition then takes the form 

where t denotes time. Besides the boundary conditions (2.3)-(2.5), the radiation 
conditions as x-+ & 00 must be fulfilled. 

The solution of the problem is divided into one steady solution and one oscillating 
part proportional to exp(jat) with j denoting the imaginary unit (see the first 
paragraph of $3). We therefore write 

where 

(Rej denotes the real part with respect to j.) We have 

v2x = 0, V2' = 0. (2.8), (2.9) 

(2.10) 

Assume that the cylinder is oscillating with its centre at 

x = Re, (5, exp ( j m t ) ) ,  y + d  = Re, (& exp(jmt)). 

The boundary conditions applied at the mean position of the body surface S are, 

and for q5 (see e.g. Newman 1978, equation (3.28)), 

(2.11) 

(2.12) 

where t = 5,e,+51,e,. 

(e, is the unit vector along the y-axis.) The last term in (2.12) accounts for the 
interaction between the steady and the oscillatory flow fields. The linearized 
boundary conditions at y = 0 are 

(2.13) 

(2.14) 
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The lee-wave problem has been discussed by Lamb (1932, p. 410), Havelock (1926, 
1936) and Tuck (1965). We shall here mainly be interested in the periodic motion. 

The mathematical problem will be solved by transforming it to an integral 
equation. This may be achieved by expressing d as a source distribution over the 
boundary of the submerged body. 

3. The integral equation 
The velocity potential for a concentrated source of strength unity, the Green 

function, oscillating with a frequency u and imbedded in a current of speed U,  has 
been derived by Haskind (1954). It is appropriate to rewrite his expression for the 
velocity potential so it becomes the real part of a Green function which is an analytic 
function of z = x+iy (we use two imaginary units, i in connection with the space 
variables and j with the time variable). The Green function for a concentrated source 
at z = zo is then found to be 

wheret 
1 exp(-ik,(z-u)) du - exp(-ik,(z-u)) du 

U-Zo 
F,(z) = ~ 

( 1 - 47); [Im U-Zo 

1 ' exp(-ik,(z-u)) du exp(-ik,(z-u)) du 
U - 5  

F,(z) = ~ 

(1 + 47); [Jm U-Zo 

and a bar denotes complex conjungate. With 

U 2  uu 

The four wavenumbers are defined by 

V V 
k 1 , , = - [ l - 2 ~ + ( 1 - 4 ~ ) ~ ] ,  k3,4 =-,[1+27f(1+4~);].  

27, 27 

For 7 > a, k, and k, become complex in i. 
Before proceeding further, let us discuss the far-field solution of the concentrated 

source. Such a discussion is given elsewhere in the literature (see e.g. Peregrine 1976). 
We find it, however, appropriate to give a short survey of the solution here. It is seen 
from (3.1)-(3.5) for 7 < a that the solution consists of four waves, viz one wave with 
wavenumber k, as x+co and three waves with wavenumbers k,, k,, k, at x = - 00. 

For 7 > i the solution consists of no waves at x = 00 and two waves with wavenumbers 
k,, k,, at x = - co. 

The various wavenumbers are found as solutions of (i) u = Uk+_ (Sky (k = k,, k,) 
and (ii) u = (gk)i- Uk (k = k,, k,), where u is positive and known. The four solutions 
are indicated in figure 1.  It is seen from the figure that, in order to get four waves, 
u must be less than a certain maximal value, i.e. 7 < a. Furthermore, in the relative 
frame of reference, both the k, wave and the k, wave have positive phase velocities 
that are larger than U. The k, wave has, however, a group velocity less than U ,  and 

-f The formulas (3.2) and (3.3) correspond to those given by Haskind. We find, however, that 
for T > 4 the lower limits in the k, integral and the k, integral must be imlk, and imlk, respectively, 
to ensure that F,(z) is bounded in the entire fluid. 
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k- 
FIGURE 1. The four wavenumbers for given u and U .  

is therefore located downstream. The k, wave has a group velocity larger than U and 
is located upstream. The k, wave has positive phase velocity smaller than U ,  and the 
k, wave has negative phase velocity. These two waves are therefore located 
downstream. As T+; the k, wave and the k, wave merge into one wave with a group 
velocity equal to U .  This leads to a singularity for T = a, revealed in the Green function 
(3.1), (3.2). 

The velocity potential @ for the motion in consideration may be written 

@(x, y ,  t )  = Rei Rej f(4 exp ( ju t ) ,  (3.6) 

f@) = f O ( 4  +fi(Z), (3.7) 

where f(z) is an analytic function of z (f(z) is also complex in j). We write 

where in the diffraction problem f,(z) is the (known) complex potential of the 
incoming waves. In the radiation problem f&) = 0. f,(z) must satisfy the radiation 
conditions at x = f 00 and the boundary conditions at y = 0 and - co . For arbitrary, 
smooth contours we writefl(z) as a source distribution over S :  

where s is the arclength and z = C(8) is the equation for the contour on parameter 
form. To secure that the boundary condition at y = 0 and the radiation condition 
are satisfied, y must be real with respect to i. y is, however, complex in j ,  being of 
the form y = y1 + jy,, where y1 and y, are real. y has to be chosen so that the boundary 
conditions at the body is satisfied. Let B(s) denote the angle between the tangent 
vector and the x-axis. Hereby 

exp (iB(s)) = - 
d8 (3.9) 
d6 

and (3.10) 
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Letting z+g and applying the boundary condition at the body, the Plemelj formula 
gives 

S 

= %(s’)+i x(s’)-fi(c(s’)) 34 exp (i@(s’)). (3.11) 
as 

A bar through the integral sign indicates the principal value. Taking the imaginary 
part with respect to i of this equation, we get rid of a$/as, which is unknown. It is 
easily shown that this equation is non-singular. This follows from the fact that the 
only singular term may be written 

(3.12) 

where r is the radius vector from {(s) to [(s’) and (n’, r )  is the angle between the radius 
vector and the outward normal at the point &’) (see Grue & Palm 1984). Since 
cos (n’,r)+O as r+O the left-hand side of (3.12) is non-singular. The imaginary part 
of (3.11) becomes 

(3.13) 

Here 

~ ( 8 )  L(s’, 8) ds = h(s‘). 

%(”) exp(-ikl(c(i)-u)) du 

f;(’‘) exp ( -ik3(c(s’)-u)) du 

&’) exp (-ik2(C(s’)-u)) du 
--m u - s o  

exp ( -ik4(g(s’)-u)) du 
u - b o  

i + j  

u - 5 0  

u - s o  

+- 
(1 -a+ (kl I, 

(3.14) 

and h(s’) = 2 - a4 (9’)-2 Im, (fi(&’)) exp (iB(8’))). 
an 

(3.15) 

There is no net mass flux across the body surface, which sets restrictions on y.  To 
see this, we integrate (3.13) with respect to 8’ around the contour. Changing the order 
of integration, applying (3.9) and using Cauchy’s theorem for analytic functions, we 
obtain 

y(s) ds = 2 ds = 0. (3.16) 

For a body of circular contour, cos (n’, r ) / r  in (3.12) is constant. From (3.16) it then 
follows that the contribution from the first term in (3.14) vanishes. 

Let R denote the radius of the cylinder and d the distance between the free surface 
and the centre of the cylinder. When (d /R)2  9 1,  the second term in (3.13) may be 
cancelled (see Grue & Palm 1984), and (3.13) reduces to 

J‘, 

y(s’) = h(s’). (3.17) 

By using this simplification in the following sections, we are able to obtain convenient, 
analytical, solutions of the problem. We shall, however, also solve the complete 
equation (3.13), applying a numerical method. Generally speaking, it will turn out 
that our approximate solution is a fair approximation when d / R  is larger than 
about 2, provided that T is not close to a. 
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To solve the complete equation (3.13) we shall apply a Fourier transform. 

y(8) = iRexp(i8)-id, (3.18) 

where 8 = 0 corresponds to the uppermost point of the circular contour. We also have 

p(e) = e+x.  (3.19) 

Introducing the angle variable 8 instead of s, we have 

According to (3.16), r(8) may be written in the form 

00 

r(8) = E (Cm exp(im8)+Cm exp(-im8)). (3.20) 

As shown in Appendix A, the Fourier transform of (3.13) is appropriately written 
as two infinite sets of linear uncoupled equations. It turns out that the systems 
converge rather rapidly, and for all purposes in this paper it suffices to truncate the 
series after ten terms. 

We shall especially be interested in the far field. By contour integration we obtain 
from (3.1)-(3.3) and (3.8) that 

m-1 

lim fi(z) = A, exp (-ik, z), 
Z+CO 

(3.21) 

lim f,(z) = A, exp ( - ik, z )  + A ,  exp (- ik, z )  -A4 exp (- ik, z) ,  (3.22) 
,+- 00 

where 

4 c 

(q = 394). 

(3.23) 

(3.24) 

Substituting the Fourier series (3.20) in (3.23) and (3.24), A, is obtained in form of 
an infinite series (see Appendix A, (A 14) and (A 15)). 

4. The oscillating cylinder 
As a first application, we consider the motion generated by an oscillating 

submerged circular cylinder. We shall consider four cases: sway, heave and with the 
centre of the cylinder describing a circular orbit clockwise or counterclockwise. 

The functionfJz) is now chosen as zero and the right-hand side of (3.13) reduces 
to 234/an, which is given by (2.12). Furthermore, we have 

n, = -sin 8, ny = cos 8. (4.1) 

, ( -2 jus in0+2~-  a 2 ~  ) + tv (2ju cos o+ 2~ - (4.2) 

Hence 

an ax an ay 

It is easily shown, utilizing the boundary condition at the body, that 

(4.3) 



264 

where vt is the total tangential velocity in the lee-wave problem, given by 

J .  Grue and E .  Palm 

Hence (4.2) only requires the knowledge of x along the contour of the body. 
By solving the X-problem, the right-hand side of (3.13) or (3.17) is known. The 

far-field solution is found from (3.21)-(3.24). The elevation q of the free surface is 
found from the Bernoulli equation, assuming that the pressure is zero at  the free 
surface. The free-surface elevation qm at x = 00 and q-m at x = - 00 in the four cases 
of forced motion is found to be of the form (compare (3.1)-(3.5) and the following 
discussion) 

qm = a2 sin(k2x-d+6,), (4-6) 

q-m = a, sin(k,z-crt+S,)+a, sin(k3x+d+6,)-a4 sin(k4x+d++4).  (4.7) 

For 7 > f ,  a, and a2 are zero. 
We shall first find the amplitudes a, and 6, by applying the approximate method, 

where (3.13) is replaced by (3.17). This method has the merit that we obtain analytical 
expressions for the unknown quantities. In this approximation x (near the contour) 
is easily found as R2 

X=Re,- 
z+id' 

As expected, this is the velocity potential in the infinite-field solution, in which the 
cylinder is replaced by a dipole. From (4.5) i t  then follows that 

vt = 2 u  case, (4-9) 

and the right-hand side of (3.17) is known. The values of a, and 8, (in this first 
approximation) are as follows. 

Sway (cz = E ,  6, = 0, E real): 

(4 .10~)  

a,= { 0 ( 7 > f ,  q =  1 , q ,  (4.10b) 

(4.10 c) 

6, = -+IT (q = 1,2,3,4) .  (4.10d 

Heave (& = 0, 6, = E ) :  
a, given by (4.10a-c), 

8, = 0 (q  = 1,2,3,4) .  (4.11 

With the centre describing a circular orbit clockwise (6, = E , ( ,  = js): 

0 (7 > f ,  q = 1,2), 

0 ( q  = 3,4),  

6,given by (4.10d). 

i 
( 4 . 1 2 ~ )  

(4.12b) 

(4 .12~)  
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With the centre describing a circular orbit counterclockwise (6% = E,,& = - jc) : 

(4 .13~)  

(4.13b) 

&,given by (4.10d). 

A characteristic feature for the approximate far-field solution for sway and heave, 
is that the phase difference is exactly in, just as for U = 0. The formulas (4.12) and 
(4.13) may be compared with the corresponding ones for U = 0, obtained by Ogilvie 
(1963). We notice that with a current the result is rather different for the two 
directions of revolution. Thus for clockwise revolution we find for 7 < a one wave 
upstream and one wave downstream. For 7 > + we find no waves at all. For 
counterclockwise revolution, however, we obtain no waves at x = 00 and two waves 
at z =-a. 

We see from (4.10) that all four amplitudes depend on k in the same way, being 
all proportional to ke exp ( - kd). Hence all the amplitudes have a maximum value 
for kd = 2. Therefore a,, for example, is dominating when u and U have values 
rendering k,d close to 2, with corresponding results for the three other waves. 

To solve the complete equation (3.13) we apply Fourier transforms, as sketched 
in Appendix A, and find the solution by standard numerical technique. The numerical 
solution shows that the approximate solution discussed above is a fair approximation 
when d/R > 2, say, and 7 is not close to a. Thus we find in the numerical solution 
that in sway and heave the amplitudes are approximately equal and that the phase 
difference is close to in. The amplitudes for the sway problem, obtained by both 
methods, are compared in figures 2 (a, b). 

For 7 4  the amplitudes a, and a, of the approximate solution tend towards 
infinity, as seen from (4.10~).  The numerical solution shows, however, that a, and 
a, approach the sameJinite limit for 7+f, as indicated in figures 2(a, b). This is an 
unexpected result. The Green function (3.1)-(3.3) becomes infinite for T++, and this 
is apparently also true for A,, A, (and thereby a,, a,) from (3.23). However, we see 
from the series expansion (A 14) that A, and A, are only dependent on Ck) - Cg)  and 
Cg)+Cg) ,  which are obtained from the infinite set of equations (A 1). Furthermore, 
it follows from (A 3) that 17%) - Cg)  and Cg) + Cg)  +O((  1 -47)i) for 7 4 .  Hence A, 
and A, tend towards a finite, common limit for 7 4 .  It may also be seen that A, 
and A, are smooth functions at 7 = a. 

Thus we have obtained that a wave generated by an oscillating submerged cylinder, 
and moving upstream with a group velocity approaching the uniform current, has 
a finite amplitude. For the very special value for 7 ,  7 = f ,  however, the problem is 
undetermined. 

We shall then examine the first-order damping force and the steady horizontal 
second-order force for sway and heave. The damping force is found from the far-field 
solution by applying the energy theorem. The velocity of the body in sway or heave 
is -m sinut. The damping force may be written 

P = D sinut, (4.14) 

where D is the transfer function, different for sway and heave. The mean work 
performed by the damping force on the fluid is then 

W = &TO. (4.15) 
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.O 

n ... " 

FIGURE 2. (a) Amplitudes for radiated waves in the sway problem, d / R  = 2.0, U/(gR)! = 0.4. a, 
is approximately zero. ( b )  Amplitudes for radiated waves in the sway problem, d / R  = 2.0, 
U/(gR)i  = 1.0. 

According to the energy equation averaged over a period, we have 

W = R,-R- , ,  (4.16) 

where R, denotes the energy flux. The energy flux for a single harmonic wave on a 
uniform current has been derived by Longuet-Higgins & Stewart (1960). We find it 
appropriate, however, to derive another version of the formula for the energy flux, 
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dividing this in two parts. It is shown in Appendix B that for a single harmonic wave 
the energy flux R,  may (also for finite depth) be written 

(4.17) 

where M is the mean mass flux, p the density of the fluid, and $3 the constant 
second-order part of the pressure (being zero for infinite depth). Furthermore, here 

(4.18) 

where u(l) = a@/& at y = 0, q(l) is the first-order elevation and a bar denotes the 
time average. E is the wave-energy density in the relative frame of reference, given by 
ipga2, where a is the amplitude of the wave. c and cg are respectively phase and group 
velocities, in the relative frame of reference. E is the energy density transported with 
the group velocity c; and is the sum of E and the coupling energy of the uniform 
current and the wave. In other problems in fluid dynamics (and plasma physics) the 
quantity corresponding to E is often called the wave-energy density, and c; E is the 
flux of wave energy. For a discussion of this concept, see, for example, Acheson (1974) 
and Cairns (1979). Here we only note that E is not positive-definite. 

Using the fact that the mean mass flux is independent of 5, we obtain 

E ~ ( c g 2 - U ) - E ~ ( c g l - U ) - E ~ ( c g 3 - U ) - E ~ ( c g 4 -  U )  (7 <a) ,  (4 .19~)  

-Ei(Cg,- U)-Ei(Cg,- U )  (7 > 9, (4.19b) 

where (4.20 a)  

Mathematically, (4.19) may be further reduced. Applying (3.4), (3.5) and (4.15), D 
mav be written 

(4.21) 

When T > a the contribution from the k, wave and the k, wave cancel. 
Values of D based on (4.21) are displayed in figures 3(a ,b )  for d / R  = 2.0, 

U/(gR)i = 0.4 and U/(gR)i = 1.0 respectively. We note that the approximate solution 
gives a fair approximation if 7 is not close to a. 

We also see that, in opposition to the approximate solution, the solution of the 
complete integral equation (3.13) gives values of D for 7-ta that are finite and 
independent of whether the limit is reached from below or above. This result follows 
immediately from (4.21), since a, and a, are finite. For larger values of d / R  the 
damping transfer function may, however, vary rather rapidly close to 7 = a, as shown 
in figure 3 (c). 

Figure 3 (b) reveals that, in a certain a-domain, there is a negative damping. It is 
of interest to interpret this phenomenon in light of the formulas derived above. From 
(4.21) we note that only the k, wave can give rise to negative damping. Physically 
speaking, this means that the k, wave has a wave-energy flux towards the body, 
whereas the other three waves have wave-energy fluxes away from the body. When 
negative damping occurs the k, wave must predominate. Since the wave-energy 
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(4 
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-- - heave 
solution by 

i Fourier series 
-(r ----.first approximation 

1 .o I 

0 -  

,j\, -sway 

---- heave 

solution by Fourier sene 

. . . . . . . . first approximatio 

-0.5 

0 

7 = 0.25 
I I 

0.5 1 .o 
Rug/g  6 

1 
I ,  = J-, (p(u'1' + u ( Z )  - U )  2+P)dY (4.23) 

flux for the k, wave is directed towards the body, i.e. in the positive x-direction (this 
wave is located downstream), and the group velocity cg3- U is along the negative 
x-direction, i t  follows that the wave-energy density Ej is negative. This is confirmed 
by (4.18), since c, < U .  

To derive the mean horizontal second-order force E ,  we apply the momentum 

(4.22) equation. We have 

where I ,  is the momentum flux defined by 

- _ -  
-F, = lm-I-m, 
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solution by Fourier series 

.. ... . .. . first approximation 

---- 

0 0.5 1 .o 
R 2 / g  - 

FIGURE 3. (a) Damping transfer functions in sway and heave, d/R = 2.0, U/(gR)i = 0.4. ( b )  
Damping transfer functions in sway and heave, d/R = 2.0, U/(gR)f = 1.0. (c) Damping transfer 
functions in sway and heave, d/R = 3.0, U/(gR)f = 0.4. 

and u(,) is a second-order velocity whose time average does not vanish. Using the fact 
that the mass flux is independent of x ,  we obtain that 

(4.24) - Ez E E3 E4 Fz = -- (cg2 - U )  +' (Cg1 - U )  +- (cg3 - U )  +- (Cg4 - U ) ,  
CZ C1 c3 c4 

where Eq = ipga; (q = 1,2,3,4). (4.25) 

When 7 > i the contributions from the k,  wave and k ,  wave cancel. If the lee waves 
are taken into account, the term 

- ips.; (4.26) 

has to be added to (4.24), where a, is the amplitude of the lee waves. The mean 
second-order force & is displayed in figure 4 for d / R  = 2.0 and U/(gR)t = 0.4. The 
force is small except for 7-values close to 4. It is seen from the figure and it follows 
from (4.24) that Fz based on the complete solution approaches a finite value for 7++, 

independent of whether the limit is obtained from below or above. 

5. The diffraction problem 
As the next application we consider the diffraction of an incoming harmonic wave 

due to a restrained submerged cylinder. Let the incoming wave elevation 7, be given 

(5.1) 7, = a sin ( k z k a t ) .  by 

The corresponding velocity potential is 

S exp ( k y )  cos ( k x k a t )  = Re, Rej fo(z) exp (jat). (5.2) 
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FIGURE 4. 
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Mean second-order horizontal force in sway and heave, d l R  = 2.0, 

Here 6 = 1 for k = k4, and 6 = - 1 for k = kl, k,, k,. fo(z) is given by 

fo(z) = 6a( iy (1  k i j )  exp(-ikz). 

Ul(gR)t = 0.4. 

(5.3) 

The f sign indicates that  the phase velocity may be along the negative or positive 
z-axes respectively. 

For a submerged body of arbitrary form there will be a transmitted wave of the 
same wavenumber as the incoming wave. I n  addition, we expect that  three new waves 
are generated for 7 < f and one new wave for 7 > f .  Let us first find the mean 
horizontal second-order force. A formula for this for a submerged body of arbitrary 
form may be written down immediately from (4.24). For example, let the incoming 
wave be a k4 wave. The mean second-order force is then obtained from (4.24) by 
adding a term 

(5.4) Ea 
-- (cg4- U ) ,  

c4 
where Ea = 2pga2. Hence 

(Cgr  - U ) .  (5.5) Fx =--(cg2-u)+-(cgl-u)+-(cg3-u)+- E2 El E3 E4 -El2 
c2 C 1  c3 c4 

For 7 > f t h e  contributions from the k,  wave and the k, wave cancel. Correspondingly, 
if the incoming wave is a k ,  wave, k, wave or k, wave, Fx is obtained from (4.24) by 
adding 

respectively. For later reference we also write down the energy equation, which is 
obtained from (4.16) by setting W = 0 and adding the contribution from the incoming 
wave. When this is a k, wave, we must add the term 

c4-  u 
E ~ ( c , , -  U ) ,  E i  = Ea- ,  

c4 
(5.7). 
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and we obtain 

E;(c,,-u)-E;(Cgl- U)-Ej(Cg3- U)- (Ei -EL)  (cg4-U) = 0. (5.8) 

For 7 > a the contributions from the k, wave and k, wave cancel. Similar expressions 
may be derived for incoming k, wave, k, wave and k, wave by adding the energy 
flux of the proper incoming wave. 

In  the formulas above we have considered a submerged body of arbitrary form. 
Let us now utilize the fact that the submerged body is a circular cylinder. We con- 
sider first the case where the incoming wave is a k, wave or a k, wave. We then have 
to use the plus sign in (5.2). The Fourier transform off&) is given in Appendix A 
by (A 12), which according to (A 6) gives hc,')-ht) = hg)+h$? = 0. Hence, from 
(A l ) ,  Cc,')-Ct) = C(z)+C(3) n n = 0. Introducing this result in (A la), we obtain that 
A, = A, = 0. We have thus shown that the far-field solution consists of two waves 
only, viz a k, wave and a k, wave. For example, let the incoming wave be a k, wave. 
The solution is then of the form 

vw = a  sin(k,x+at), (5.9) 

q-w = a, sin(k,x+at+&,)+a, sin(k,x+at-a,), (5.10) 

where 8, and 8, are phase constants. The solution for an incoming k, wave is obtained 
from (5.9) and (5.10) by replacing k, with k, in (5.9). We notice that the incoming 
wave is split up into two waves, but there is no reflection. The result is valid for all 
7-values. 

We then assume that the incoming wave is either a k, wave or a k, wave. We 
must then use the minus sign in (5.2). It is now found (from Appendix A) that 
hc,') + hp) = hf) - = 0. From (A 2) it then follows that Cp) + Ct) = Cf) - Cf) = 0. 
Introducing this in (A 15), we conclude that A, = A, = 0. In this case also the far 
field consists of two waves only. If the incoming wave is a k, wave at x = 00 the 
solution will be of the form 

yw = a sin(k,z-at)+a, sin(k,x-at+&,), (5.11) 

v - ,  = a, sin(k,x-at+S,). (5.12) 

For an incoming k, wave at x = - 00 we have 

vw = a, sin(k,x-at+S,), (5.13) 

q-w = a, sin(k,z-at+&,)+a sin(k,x-at). (5.14) 

It is here assumed that 7 < a. Hence for incoming k, waves and k, waves the motion 
consists of an incoming wave, a transmitted wave and a reflected wave. We have thus 
obtained, without making any approximation, that, for submerged bodies of circular 
contour, only two waves will occur in the diffraction problem. This result is a 
generalization to U =I= 0 of the fact that for U = 0 there is no reflection from a 
submerged circular cylinder (see the introduction). This latter result is easily obtained 
from the formulas above by letting U+O. 

Let us now compute the amplitude of the reflected and transmitted wave. First 
we apply the approximate method based on (3.17). The Fourier transform of y is then 
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equal to  (A 12). This introduced in (A 14) and (A 15) leads to  the following expression 
for the amplitudes of the new waves: 

where I ,  denotes the modified Bessel function of the first kind of order one. 
Furthermore, the phase constants of the new k,, k, and k3 waves are ?p, whereas the 
phase constant of the new k, wave is -$c. The phase constants of the transmitted 
waves are 

exp(-2kqd)11(2kqR) (a = 1,2), (5.17) 

exp(-2kqd)1,(2kqR) (q = 3,4). (5.18) 

The amplitude of the transmitted wave in this approximation is found to be equal 
to  the amplitude of the incoming wave. 

We then compute the amplitudes by solving the complete equation (3.13) using 
the method outlined in Appendix A. The relative amplitudes of the generated k, wave 
for an incoming k, wave, based on (3.13) and (3.17), are displayed in figure 5(a) .  It 
is noted that for the considered values of the parameters the approximate solution 
is a fair approximation. The amplitude a, of the transmitted wave is found to be very 
close to  a. The amplitudes of the reflected and transmitted waves for an incoming 
k, wave based on the complete equation (3.13) are displayed in figure 5(b ) .  Since the 
energy flux for the incoming k, wave tends to zero as 7+:, we expect that the 
amplitudes a, and a, remain finite as 7+:. This is confirmed by the numerical 
computations. 

The general expression (5.5) for the second-order force and the energy equation (5.8) 
takes a simpler form for a body of circular contour. Considering an incoming k, wave, 
the energy equation reduces to  

a,2-a2 = a; -. k4 (5.19) 

We note that the amplitude of the transmitted wave is larger than the amplitude 
of the incoming wave, in spite of the fact that  a new wave is generated. Using (5.19), 
the formula for the second-order force reduces to 

4nk, R 

4n k, R 
(1 +47)f 

( 1 - 47): 
& =[ 

k3 

(5.20) 

For an incoming k, wave the energy equation is obtained from (5.19) by interchanging 
the subscripts 3 and 4. It is found that 

For an incoming k, wave the energy equation gives 

(5.21) 
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FIGTJRE 6. (a) Amplitude of new k, wave in the diffraction problem when k, waves are incident upon 
the cylinder, d / R  = 2.0, U/(gR)i = 1.0, 1.6. (b)  Amplitude of transmitted k, wave and reflected k, 
wave when k, waves are incident upon the cylinder, d / R  = 2.0, U/(gR)i = 0.4, 1.0. 

The second-order force may be written 

(5.23) 

It is noted that the force is positive, in spite of an incoming wave travelling 
downstream. If the incoming wave is a k2 wave the energy equation becomes 

(5.24) 
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and 

0 0.127 
RaP/g - 

FIGURE 6. Mean second-order horizontal force when k, waves are 
incident upon the cylinder, dfR  = 2.0, Uf(gR)! = 0.7. 

(5.25) 

The force is now negative, whereas the incoming wave is travelling along the positive 
x-axis. 

It is of interest t o  compare the second-order force Fz with the lee-wave force (4.26). 
For most values of the parameters, Fz is relatively small. It is found, however, that  
the largest force is obtained for an incoming k, wave. This force has a maximum value 
of about 0.35pga2 for Ra2/g = 0.08 and U/(gR)t  = 0.7 (see figure 6). We notice that, 
if the amplitude of the incoming wave is about the same as the amplitude of the lee 
wave, the maximal & is of the same magnitude as the lee-wave force. 

6. Discussion 
To examine more closely the validity of our solution, we have computed the lee-wave 

field and found the maximum value of I ax/az I a t  the free surface. It turns out that  
the maximum value is close to  the maximum value at x = - 00, which is displayed 
in figure 7. In  order that  the solution be a uniformly good approximation, this 
maximum value should be considerably smaller than 1. We notice from the figure 
that the maximum of I ax/az I is in fact larger than 1 for d / R  = 2 and U/(gR)t near 
unity. Our solution is most likely not a good approximation for U/(gR)t near unity 
and d / R  smaller than about 4. The figure also indicates that  the linearized lee-wave 
problem may with fair approximation be solved by applying (3.17), instead of the 
complete integral equation. 

We have tacitly assumed that (3.13) has a unique solution, which is confirmed by 
the numerical results. This is easily shown to be true if we assume that the physical 
problem is  unique, which seems t o  be obvious when 7 + a. Following an argument 
given by Ursell(l973) in another context, we assume for the moment that a@/an = 0 
(the body at rest) and there is no incoming wave. According to  our basic assumption 
there is then no motion, andf,(z) is constant outside the body. The right-hand side 
of (3.13) is zero, and we shall prove that y = 0. Let us consider the potential defined 
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FIQURE 7. Maximum of lax/azl at z = -co, d / R  = 2.0, 3.0,4.0. 

by (3.8) inside the body. It is immediately seen that f l ( z )  is continuous across the 
boundary. Hence f l ( z )  inside the body is constant, i.e. &(z) = 0. Approaching the 
boundary from the inside and applying the Plemelj theorem, we then have 

(6.1) 
1 

Im, (2fi([(s')) exp (is@'))) = -y(s') +- y(s) L(d ,  8) ds = 0. 
7c Js 

Comparing with (3.13) with the right-hand side zero, it follows that y = 0. Hence we 
have proved the assertion. 

Appendix A. Solution of the integral equation by Fourier transform 
The exact solution of the integral equation (3.13) is obtained using a Fourier 

transform. The Fourier series (3.20) for the unknown y and the parameter forms (3.18) 
and (3.19) for the contour and the angle B are used. Multiplying the integral equation 
with (1/2x) exp ( -in@') and integrating from 0 to 27c, the following two infinite sets 
of equations are obtained: 

((72) C2' - + cp Ct)) + m-l (a#,, /qL - 2) (Cg) Cg)+Cg)  - "2)) = ( h t )  hc,Z)+hg) - h t ) )  ' (A 1 )  

where 

(m+n- l ) !  R m+n - - 
m!(n-l)! (%) 

n-l (m+q-l)!  1 
exp (-2k, d )  Em+,(2k1 d exp (-in)) + X 

q-1 m !  (2k,d)* 
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2 - - 

n-l ( m + q - l ) !  1 
q-l m !  (2k3dP 

exp ( - 2k3 d )  Em+,(2k3 d exp ( - in)) + X 
n-l ( m + q - l ) !  1 

(A 4) 

- (Rk,), (exp ( - 2k4 d )  Em+,(2k4 d exp ( -in)) + X 

C ,  = C g )  + iC(n2) + jCF) + ijCg), 

h, = hg) + ih(,2) + jhg) -t ijhg). 

h, is the Fourier transform of the right-hand side of (3.13), 

and Clp), h 2 )  (q = 1,2,3,4)  are reals. 
The exponential integral Ern+, of order m+ 1 is defined in Abramowitz & Stegun 

q*m 

where y = 0.5772157 ... is Euler's constant. 

(k l ,E3+co,  k ,k ,+v )  and the lee-wave problem a+O (k,, k,+g/ZP,  k,,k,+O). 
The systems of equations (A 1) and ( A 2 )  contain the two limits U+O 

The Fourier transforms of the various right-hand sides are as follows. 

The lee-wave problem; f,,(z) = - Uz:  

where IS,, is the Kronecker delta. 
h, = iUS,,, 

Thesway problem; -2jasinB+2U- 

Theheave problem; 2jacosB+2U- 

The diffraction problem ; fo(z) = Su - (1 f ij) exp ( - ikz) : (:Y 
(kR)"-l 

hn = - (1 f i j)  Sa(gk): exp ( - kd) ___ (n 3 1). (n- l ) !  
In (A 10) and (A 1 1 )  the tangential velocity of the lee-wave problem (To = 0) 

03 

wt = U E (T, exp (imB) + Tm exp (- im6)) (A 13) 
m-1 
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is used. It may be shown that UT, = - iC,, where C ,  is the Fourier transform of y in 
the lee-wave problem. 

The amplitudes of the far-field solution for the velocity potentialf,(z) are given 
by the following infinite series: 

2xRexp(-k,d) 
A, = i( l  -ij) 

(1 - 47)f 

27cR exp ( - k, d )  
A, = i( l  +ij) 

(1 + 47)f 

Appendix B. The energy flux 

order in the amplitude, we have 
Let us consider a single harmonic wavetrain. Retaining only terms to the second 

R, = J'I, (p++poz++y)(- U+u( ' )+~(~) )dy ,  (B 1) 

where h is the depth of the fluid layer and a bar denotes time average. The other 
quantities are defined in $4. We may write 

P = - p ( & + W -  W+gy)+@, (B 2) 

where & is the velocity potential to second order with &t = 0, and @ is a second- 
order constant. Hereby 

where M is the mean mass flux: 

After some elementary algebra we find 

c- u M + E - ( c , - U ) ,  C 

where c and cg are respectively the phase velocity and group velocity in the relative 
frame of reference. 
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